Spectral Methods for Hyperbolic Problems

نویسنده

  • J. S. Hesthaven
چکیده

We review spectral methods for the solution of hyperbolic problems. To keep the discussion concise, we focus on Fourier spectral methods and address key issues of accuracy, stability, and convergence of the numerical approximations. Polynomial methods are discussed when these lead to qualitatively different schemes as, for instance, when boundary conditions are required. The discussion includes nonlinear stability and the use of filters and post-processing techniques to minimize or overcome the Gibbs phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Spectral Approximations of High-Dimensional Problems Based on Hyperbolic Cross

Hyperbolic cross approximations by some classical orthogonal polynomials/functions in both bounded and unbounded domains are considered in this paper. Optimal error estimates in proper anisotropic weighted Korobov spaces for both regular hyperbolic cross approximations and optimized hyperbolic cross approximations are established. These fundamental approximation results indicate that spectral m...

متن کامل

Accuracy of High Order and Spectral Methods for Hyperbolic Conservation Laws with Discontinuous Solutions

Higher order and spectral methods have been used with success for elliptic and parabolic initial and boundary value problems with smooth solutions. On the other hand, higher order methods have been applied to hyperbolic problems with less success, as higher order approximations of discontinuous solutions suffer from the Gibbs phenomenon. We extend past work and show that spectral methods yield ...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

Spectral Methods with Postprocessing for Numerical Hyperbolic Heat Transfer

Under the governing equations of Hyperbolic Heat Transfer, energy propagates through a medium as a wave with sharp discontinuities at the wave front. The use of spectral methods to solve such problems numerically results in a solution in which strong numerical oscillations are present due to the Gibbs-Wilbraham Phenomenon. It is demonstrated that a spectrally accurate solution can still be obta...

متن کامل

Wavelet-galerkin Discretization of Hyperbolic Equations

The relative merits of the wavelet-Galerkin solution of hyperbolic partial diieren-tial equations, typical of geophysical problems, are quantitatively and qualitatively compared to traditional nite diierence and Fourier-pseudo-spectral methods. The wavelet-Galerkin solution presented here is found to be a viable alternative to the two conventional techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016